416 research outputs found

    High-Altitude Emission from Pulsar Slot Gaps: The Crab Pulsar

    Get PDF
    We present results of a 3D model of optical to gamma-ray emission from the slot gap accelerator of a rotation-powered pulsar. Primary electrons accelerating to high-altitudes in the unscreened electric field of the slot gap reach radiation-reaction limited Lorentz factors of 2 x 10^7, while electron-positron pairs from lower-altitude cascades flow along field lines interior to the slot gap. The curvature, synchrotron and inverse Compton radiation of both primary electrons and pairs produce a broad spectrum of emission from infra-red to GeV energies. Both primaries and pairs undergo cyclotron resonant absorption of radio photons, allowing them to maintain significant pitch angles. Synchrotron radiation from pairs with a power-law energy spectrum with Lorentz factors 10^2 - 10^5, dominate the spectrum up to 10 MeV. Synchrotron and curvature radiation of primaries dominates from 10 MeV up to a few GeV. We examine the energy-dependent pulse profiles and phase-resolved spectra for parameters of the Crab pulsar as a function of magnetic inclination and viewing angle, comparing to broad-band data. In most cases, the pulse profiles are dominated by caustics on trailing field lines. We also explore the relation of the high-energy and the radio profiles, as well as the possibility of caustic formation in the radio cone emission. We find that the Crab pulsar profiles and spectrum can be reasonably well reproduced by a model with viewing angle 45 degrees and inclination angle 100 or 80 degrees. This model predicts that the slot gap emission below 200 MeV will exhibit correlations in time and phase with the radio emission.Comment: 35 pages, 7 figures, accepted for publication in Astrophysical Journa

    Clustered Spanning Tree - Conditions for Feasibility

    Get PDF
    International audienceLet H = be a hypergraph, where V is a set of vertices and S is a set of not necessarily disjoint clusters Si ⊆ V. The Clustered Spanning Tree problem is to find a spanning tree of G which satisfies that each cluster induces a subtree, when it exists. We provide an efficient and unique algorithm which finds a feasible solution tree for H when it exists, or states that no feasible solution exists. The paper also uses special structures of the intersection graph of H to construct a feasible solution more efficiently. For cases when the hypergraph does not have a feasible solution tree, we consider adding vertices to exactly one cluster in order to gain feasibility. We characterize when such addition can gain feasibility, find the appropriate cluster and a possible set of vertices to be added

    Recognizing Chordal-Bipartite Probe Graphs

    Get PDF
    A graph G is chordal-bipartite probe if its vertices can be partitioned into two sets P (probes) and N (non-probes) where N is a stable set and such that G can be extended to a chordal-bipartite graph by adding edges between non-probes. A bipartite graph is called chordal-bipartite if it contains no chordless cycle of length strictly greater than 5. Such probe/non-probe completion problems have been studied previously on other families of graphs, such as interval graphs and chordal graphs. In this paper, we give a characterization of chordal-bipartite probe graphs, in the case of a fixed given partition of the vertices into probes and nonprobes. Our results are obtained by solving first the more general case without assuming that N is a stable set, and then this can be applied to the more specific case. Our characterization uses an edge elimination ordering which also implies a polynomial time recognition algorithm for the class. This research was conducted in the context of a France-Israel Binational project, while the French team visited Haifa in March 2007

    My funky genetics : BRCA1/2 mutation carriers\u27 understanding of genetic inheritance and reproductive merger in the context of new reprogenetic technologies

    Get PDF
    Deleterious mutations in the BRCA1/BRCA2 genes elevate lifetime risk of breast and ovarian cancer. Each child of a mutation-positive parent has a 50% chance of inheriting it. Preimplantation genetic diagnosis (PGD) permits prospective parents to avoid the birth of a BRCA-mutation-positive child, introducing predictability into a process historically defined by chance. This investigation explored how BRCA1/2 mutation carriers understand genetic inheritance and consider a child\u27s inheritance of a BRCA1/2 mutation, given the opportunities that exist to pursue PGD. Thirty-nine female and male BRCA1/2 mutation carriers of reproductive age were recruited from urban cancer and reproductive medical centers. Participants completed a standardized educational presentation on PGD and prenatal diagnosis, with pre-and posttest assessments. An interdisciplinary team of qualitative researchers analyzed data using grounded theory techniques. Participants expressed the belief that reproduction yields children with unique genetic strengths and challenges, including the BRCA1/2 mutation, family traits for which predictive tests do not exist, and hypothetical genetic risks. Participants expressed preference for biologically related children, yet stated their genetically well partner\u27s lineage would be marred through reproductive merger, requiring the well partner to assume the burden of the BRCA1/2 mutation via their children. Participants expressed diverse views of genetically well partners\u27 participation in family planning and risk management decisions. Pressure to use reprogenetic technology may grow as genetic susceptibility testing becomes more widely available. Work with individuals and couples across the disease spectrum must be attuned to the ways beliefs about genetic inheritance play into reproductive decision-making. (PsycINFO Database Record (c) 2012 APA, all rights reserved) © 2012 American Psychological Association

    Parameterized Domination in Circle Graphs

    Get PDF
    A circle graph is the intersection graph of a set of chords in a circle. Keil [Discrete Applied Mathematics, 42(1):51-63, 1993] proved that Dominating Set, Connected Dominating Set, and Total Dominating Set are NP-complete in circle graphs. To the best of our knowledge, nothing was known about the parameterized complexity of these problems in circle graphs. In this paper we prove the following results, which contribute in this direction: Dominating Set, Independent Dominating Set, Connected Dominating Set, Total Dominating Set, and Acyclic Dominating Set are W[1]-hard in circle graphs, parameterized by the size of the solution. Whereas both Connected Dominating Set and Acyclic Dominating Set are W[1]-hard in circle graphs, it turns out that Connected Acyclic Dominating Set is polynomial-time solvable in circle graphs. If T is a given tree, deciding whether a circle graph has a dominating set isomorphic to T is NP-complete when T is in the input, and FPT when parameterized by |V(T)|. We prove that the FPT algorithm is subexponential

    The DNA damage response pathway regulates the expression of the immune checkpoint CD47

    Get PDF
    CD47 is a cell surface ligand expressed on all nucleated cells. It is a unique immune checkpoint protein acting as “don’t eat me” signal to prevent phagocytosis and is constitutively overexpressed in many tumors. However, the underlying mechanism(s) for CD47 overexpression is not clear. Here, we show that irradiation (IR) as well as various other genotoxic agents induce elevated expression of CD47. This upregulation correlates with the extent of residual double-strand breaks (DSBs) as determined by ÎłH2AX staining. Interestingly, cells lacking mre-11, a component of the MRE11-RAD50-NBS1 (MRN) complex that plays a central role in DSB repair, or cells treated with the mre-11 inhibitor, mirin, fail to elevate the expression of CD47 upon DNA damage. On the other hand, both p53 and NF-ÎșB pathways or cell-cycle arrest do not play a role in CD47 upregualtion upon DNA damage. We further show that CD47 expression is upregulated in livers harvested from mice treated with the DNA-damage inducing agent Diethylnitrosamine (DEN) and in cisplatin-treated mesothelioma tumors. Hence, our results indicate that CD47 is upregulated following DNA damage in a mre-11-dependent manner. Chronic DNA damage response in cancer cells might contribute to constitutive elevated expression of CD47 and promote immune evasion.</p

    A Thin Skin Calorimeter (TSC) for Quantifying Irradiation During Large-scale Fire Testing

    Get PDF
    This paper details a novel method for quantifying irradiation (incident radiant heat flux) at the exposed surface of solid elements during large-scale fire testing. Within the scope of the work presented herein, a type of Thin Skin Calorimeter (TSC) was developed intending for a practical, low cost device enabling the cost-effective mass production required for characterising the thermal boundary conditions during multiple large-scale fire tests. The technical description of the TSC design and a formulation of the proposed calibration technique are presented. This methodology allows for the quantification of irradiation by means of an a posteriori analysis based on a temperature measurement from the TSC, a temperature measurement of the gas-phase in the vicinity of the TSC and a correction factor defined during a pre-test calibration process. The proposed calibration methodology is designed to account for uncertainties inherent to the simplicity of the irradiation measurement technique, therefore not requiring precise information regarding material thermal and optical properties. This methodology is designed and presented so as to enable adaption of the technique to meet the specific requirements of other experimental setups. This is conveyed by means of an example detailing the design and calibration of a device designed for a series of large-scale experiments as part of the ‘Real Fires for the Safe Design of Tall Buildings’ project
    • 

    corecore